Files
Comparison_Project/app/routes/file_report.py

302 lines
14 KiB
Python

from flask import Blueprint, render_template, request, send_file, flash
from app.models.subcontractor_model import Subcontractor
from app.models.manhole_excavation_model import ManholeExcavation
from app.models.trench_excavation_model import TrenchExcavation
from app.models.manhole_domestic_chamber_model import ManholeDomesticChamber
from app.models.mh_ex_client_model import ManholeExcavationClient
from app.models.tr_ex_client_model import TrenchExcavationClient
from app.models.mh_dc_client_model import ManholeDomesticChamberClient
from app.utils.helpers import login_required
import pandas as pd
import io
from enum import Enum
# --- 1. DEFINE BLUEPRINT FIRST (Prevents NameError) ---
file_report_bp = Blueprint("file_report", __name__, url_prefix="/file")
class BillType(Enum):
Client = 1
Subcontractor = 2
# --- 2. DEFINE CLASSES ---
class SubcontractorBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
def Fetch(self, RA_Bill_No=None, subcontractor_id=None):
# Build dynamic filters based on what is provided
filters = {}
if subcontractor_id:
filters["subcontractor_id"] = subcontractor_id
if RA_Bill_No:
filters["RA_Bill_No"] = RA_Bill_No
# Query using the filters
trench = TrenchExcavation.query.filter_by(**filters).all()
mh = ManholeExcavation.query.filter_by(**filters).all()
dc = ManholeDomesticChamber.query.filter_by(**filters).all()
# Convert to DataFrames
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
# Standardize columns and clean internal SQLAlchemy state
if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
# --- Updated Route with "Download All" Support ---
@file_report_bp.route("/report", methods=["GET", "POST"])
@login_required
def report_file():
subcontractors = Subcontractor.query.all()
if request.method == "POST":
subcontractor_id = request.form.get("subcontractor_id")
ra_bill_no = request.form.get("ra_bill_no")
download_all = request.form.get("download_all") == "true" # Check for toggle
if not subcontractor_id:
flash("Please select a subcontractor.", "danger")
return render_template("report.html", subcontractors=subcontractors)
subcontractor = Subcontractor.query.get(subcontractor_id)
bill_gen = SubcontractorBill()
if download_all:
# Fetch EVERYTHING for this subcontractor
bill_gen.Fetch(subcontractor_id=subcontractor_id, RA_Bill_No=None)
file_name = f"{subcontractor.subcontractor_name}_ALL_BILLS.xlsx"
else:
if not ra_bill_no:
flash("Please enter an RA Bill Number or select 'Download All'.", "danger")
return render_template("report.html", subcontractors=subcontractors)
bill_gen.Fetch(RA_Bill_No=ra_bill_no, subcontractor_id=subcontractor_id)
file_name = f"{subcontractor.subcontractor_name}_RA_{ra_bill_no}_Report.xlsx"
if bill_gen.df_tr.empty and bill_gen.df_mh.empty and bill_gen.df_dc.empty:
flash("No data found for this selection.", "warning")
return render_template("report.html", subcontractors=subcontractors)
output = io.BytesIO()
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
bill_gen.df_tr.to_excel(writer, index=False, sheet_name="Tr.Ex.")
bill_gen.df_mh.to_excel(writer, index=False, sheet_name="MH.Ex.")
bill_gen.df_dc.to_excel(writer, index=False, sheet_name="MH & DC")
output.seek(0)
return send_file(output, download_name=file_name, as_attachment=True,
mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
return render_template("report.html", subcontractors=subcontractors)
class ClientBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
def Fetch(self, RA_Bill_No):
trench = TrenchExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
mh = ManholeExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
dc = ManholeDomesticChamberClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
# Standardize columns for merging
if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
import pandas as pd
import io
from flask import Blueprint, render_template, request, send_file, flash
from app.models.subcontractor_model import Subcontractor
from app.models.manhole_excavation_model import ManholeExcavation
from app.models.trench_excavation_model import TrenchExcavation
from app.models.manhole_domestic_chamber_model import ManholeDomesticChamber
from app.models.mh_ex_client_model import ManholeExcavationClient
from app.models.tr_ex_client_model import TrenchExcavationClient
from app.models.mh_dc_client_model import ManholeDomesticChamberClient
from app.utils.helpers import login_required
# --- BLUEPRINT DEFINITION ---
# Ensure this is unique to avoid conflicts
file_report_bp = Blueprint("file_report", __name__, url_prefix="/file")
class ClientBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
def Fetch(self, RA_Bill_No):
trench = TrenchExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
mh = ManholeExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
dc = ManholeDomesticChamberClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
# Standardize columns for merging
if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
class SubcontractorBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
def Fetch(self, RA_Bill_No):
trench = TrenchExcavation.query.filter_by(RA_Bill_No=RA_Bill_No).all()
mh = ManholeExcavation.query.filter_by(RA_Bill_No=RA_Bill_No).all()
dc = ManholeDomesticChamber.query.filter_by(RA_Bill_No=RA_Bill_No).all()
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
@file_report_bp.route("/client_vs_subcont", methods=["GET", "POST"])
@login_required
def client_vs_all_subcontractor():
<<<<<<< HEAD
=======
# Initialize empty variables for the template
tables = {"tr": None, "mh": None, "dc": None}
ra_val = ""
>>>>>>> 2636f2e (added client RA bill wise download report)
if request.method == "POST":
RA_Bill_No = request.form.get("RA_Bill_No")
ra_val = RA_Bill_No
if not RA_Bill_No:
flash("Please enter RA Bill No.", "danger")
return render_template("generate_comparison_client_vs_subcont.html")
# ... (Keep your existing data fetching and processing logic exactly as is) ...
clientBill = ClientBill()
clientBill.Fetch(RA_Bill_No=RA_Bill_No)
contractorBill = SubcontractorBill()
contractorBill.Fetch(RA_Bill_No=RA_Bill_No)
<<<<<<< HEAD
# Updated QTY lists to match model fields exactly
qty_cols = [
"Soft_Murum_0_to_1_5_total", "Soft_Murum_1_5_to_3_0_total", "Soft_Murum_3_0_to_4_5_total",
"Hard_Murum_0_to_1_5_total", "Hard_Murum_1_5_to_3_0_total", "Hard_Murum_3_0_to_4_5_total",
"Soft_Rock_0_to_1_5_total", "Soft_Rock_1_5_to_3_0_total", "Soft_Rock_3_0_to_4_5_total",
"Hard_Rock_0_to_1_5_total", "Hard_Rock_1_5_to_3_0_total", "Hard_Rock_3_0_to_4_5_total",
"Hard_Rock_4_5_to_6_0_total", "Hard_Rock_6_0_to_7_5_total"
]
mh_dc_qty_cols = [
"d_0_to_1_5", "d_1_5_to_2_0", "d_2_0_to_2_5", "d_2_5_to_3_0",
"d_3_0_to_3_5", "d_3_5_to_4_0", "d_4_0_to_4_5", "d_4_5_to_5_0",
"d_5_0_to_5_5", "d_5_5_to_6_0", "d_6_0_to_6_5", "Domestic_Chambers"
]
# Aggregate Subcontractor Data safely
=======
# ... (Keep all your qty_cols, mh_dc_qty_cols, and aggregate_df function) ...
qty_cols = [...] # (Your existing list)
mh_dc_qty_cols = [...] # (Your existing list)
>>>>>>> 2636f2e (added client RA bill wise download report)
def aggregate_df(df, group_cols, sum_cols):
if df.empty: return pd.DataFrame()
existing_cols = [c for c in sum_cols if c in df.columns]
return df.groupby(group_cols, as_index=False)[existing_cols].sum()
df_sub_tr_grp = aggregate_df(contractorBill.df_tr, ["Location", "MH_NO"], qty_cols)
df_sub_mh_grp = aggregate_df(contractorBill.df_mh, ["Location", "MH_NO"], qty_cols)
df_sub_dc_grp = aggregate_df(contractorBill.df_dc, ["Location", "Node_No"], mh_dc_qty_cols)
<<<<<<< HEAD
# Merge and Calculate Difference
=======
>>>>>>> 2636f2e (added client RA bill wise download report)
df_tr_cmp = clientBill.df_tr.merge(df_sub_tr_grp, on=["Location", "MH_NO"], how="left", suffixes=("_Client", "_Sub"))
df_mh_cmp = clientBill.df_mh.merge(df_sub_mh_grp, on=["Location", "MH_NO"], how="left", suffixes=("_Client", "_Sub"))
df_dc_cmp = clientBill.df_dc.merge(df_sub_dc_grp, on=["Location", "Node_No"], how="left", suffixes=("_Client", "_Sub"))
<<<<<<< HEAD
# Calculate Diffs
=======
>>>>>>> 2636f2e (added client RA bill wise download report)
for df in [df_tr_cmp, df_mh_cmp]:
for col in qty_cols:
if f"{col}_Client" in df.columns:
df[f"{col}_Diff"] = df[f"{col}_Client"].fillna(0) - df[f"{col}_Sub"].fillna(0)
for col in mh_dc_qty_cols:
if f"{col}_Client" in df_dc_cmp.columns:
df_dc_cmp[f"{col}_Diff"] = df_dc_cmp[f"{col}_Client"].fillna(0) - df_dc_cmp[f"{col}_Sub"].fillna(0)
<<<<<<< HEAD
output = io.BytesIO()
file_name = f"Comparison_RA_Bill_{RA_Bill_No}.xlsx"
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
df_tr_cmp.to_excel(writer, sheet_name="Tr.Ex Comparison", index=False)
df_mh_cmp.to_excel(writer, sheet_name="Mh.Ex Comparison", index=False)
df_dc_cmp.to_excel(writer, sheet_name="MH & DC Comparison", index=False)
output.seek(0)
return send_file(output, download_name=file_name, as_attachment=True, mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
return render_template("generate_comparison_client_vs_subcont.html")
=======
# ACTION LOGIC: Check if user clicked "Download" or just "Preview/Generate"
if request.form.get("action") == "download":
output = io.BytesIO()
file_name = f"Comparison_RA_Bill_{RA_Bill_No}.xlsx"
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
df_tr_cmp.to_excel(writer, sheet_name="Tr.Ex Comparison", index=False)
df_mh_cmp.to_excel(writer, sheet_name="Mh.Ex Comparison", index=False)
df_dc_cmp.to_excel(writer, sheet_name="MH & DC Comparison", index=False)
output.seek(0)
return send_file(output, download_name=file_name, as_attachment=True, mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
# If not downloading, convert DFs to HTML for the UI
tables["tr"] = df_tr_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
tables["mh"] = df_mh_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
tables["dc"] = df_dc_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
return render_template("generate_comparison_client_vs_subcont.html", tables=tables, ra_val=ra_val)
>>>>>>> 2636f2e (added client RA bill wise download report)