Files
Comparison_Project/app/routes/file_report.py

456 lines
19 KiB
Python
Raw Normal View History

import pandas as pd
import io
from flask import Blueprint, render_template, request, send_file, flash
2025-12-12 11:38:54 +05:30
from app.models.subcontractor_model import Subcontractor
from app.models.manhole_excavation_model import ManholeExcavation
from app.models.trench_excavation_model import TrenchExcavation
from app.models.manhole_domestic_chamber_model import ManholeDomesticChamber
2025-12-23 19:40:41 +05:30
from app.models.mh_ex_client_model import ManholeExcavationClient
from app.models.tr_ex_client_model import TrenchExcavationClient
from app.models.mh_dc_client_model import ManholeDomesticChamberClient
from app.utils.helpers import login_required
2026-01-15 14:29:58 +05:30
<<<<<<< HEAD
import pandas as pd
import io
2025-12-24 16:37:07 +05:30
from enum import Enum
2025-12-12 11:38:54 +05:30
# --- 1. DEFINE BLUEPRINT FIRST (Prevents NameError) ---
2025-12-12 11:38:54 +05:30
file_report_bp = Blueprint("file_report", __name__, url_prefix="/file")
2025-12-24 16:37:07 +05:30
class BillType(Enum):
Client = 1
Subcontractor = 2
2025-12-12 11:38:54 +05:30
# --- 2. DEFINE CLASSES ---
2025-12-24 16:37:07 +05:30
class SubcontractorBill:
def __init__(self):
# Initialize as empty DataFrames so .to_excel() always exists
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
def Fetch(self, RA_Bill_No, subcontractor_id):
# Query data filtered by both Bill No and Subcontractor ID
trench = TrenchExcavation.query.filter_by(RA_Bill_No=RA_Bill_No, subcontractor_id=subcontractor_id).all()
mh = ManholeExcavation.query.filter_by(RA_Bill_No=RA_Bill_No, subcontractor_id=subcontractor_id).all()
dc = ManholeDomesticChamber.query.filter_by(RA_Bill_No=RA_Bill_No, subcontractor_id=subcontractor_id).all()
# Convert SQL objects to DataFrames
2025-12-24 16:37:07 +05:30
self.df_tr = pd.DataFrame([c.__dict__ for c in trench])
self.df_mh = pd.DataFrame([c.__dict__ for c in mh])
self.df_dc = pd.DataFrame([c.__dict__ for c in dc])
# Clean Columns (remove SQLAlchemy internal state)
drop_cols = ["id", "created_at", "_sa_instance_state"]
2025-12-24 16:37:07 +05:30
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
# --- 3. DEFINE ROUTES ---
2026-01-15 14:29:58 +05:30
=======
# --- BLUEPRINT DEFINITION ---
2025-12-12 11:38:54 +05:30
file_report_bp = Blueprint("file_report", __name__, url_prefix="/file")
# --- DATA WRAPPERS ---
class ClientBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
2025-12-24 16:37:07 +05:30
def Fetch(self, RA_Bill_No):
trench = TrenchExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
mh = ManholeExcavationClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
dc = ManholeDomesticChamberClient.query.filter_by(RA_Bill_No=RA_Bill_No).all()
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
2025-12-24 16:37:07 +05:30
for df in [self.df_tr, self.df_mh, self.df_dc]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
class SubcontractorBill:
def __init__(self):
self.df_tr = pd.DataFrame()
self.df_mh = pd.DataFrame()
self.df_dc = pd.DataFrame()
2026-01-16 11:27:26 +05:30
self.df_laying = pd.DataFrame()
def Fetch(self, RA_Bill_No=None, subcontractor_id=None):
filters = {}
if subcontractor_id:
filters["subcontractor_id"] = subcontractor_id
if RA_Bill_No:
filters["RA_Bill_No"] = RA_Bill_No
trench = TrenchExcavation.query.filter_by(**filters).all()
mh = ManholeExcavation.query.filter_by(**filters).all()
dc = ManholeDomesticChamber.query.filter_by(**filters).all()
2026-01-16 11:27:26 +05:30
lay = ManholeDomesticChamber.query.filter_by(**filters).all()
self.df_tr = pd.DataFrame([c.serialize() for c in trench])
self.df_mh = pd.DataFrame([c.serialize() for c in mh])
self.df_dc = pd.DataFrame([c.serialize() for c in dc])
2026-01-16 11:27:26 +05:30
self.df_laying = pd.DataFrame([c.serialize() for c in lay])
2026-01-16 11:27:26 +05:30
# if not self.df_dc.empty and "MH_NO" in self.df_dc.columns:
# self.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
drop_cols = ["id", "created_at", "_sa_instance_state"]
2026-01-16 11:27:26 +05:30
for df in [self.df_tr, self.df_mh, self.df_dc, self.df_laying]:
if not df.empty:
df.drop(columns=drop_cols, errors="ignore", inplace=True)
2026-01-16 11:30:49 +05:30
<<<<<<< HEAD
# --- ROUTES ---
# @file_report_bp.route("/report", methods=["GET", "POST"])
# @login_required
# def report_file():
# subcontractors = Subcontractor.query.all()
# if request.method == "POST":
# subcontractor_id = request.form.get("subcontractor_id")
# ra_bill_no = request.form.get("ra_bill_no")
# download_all = request.form.get("download_all") == "true"
# if not subcontractor_id:
# flash("Please select a subcontractor.", "danger")
# return render_template("report.html", subcontractors=subcontractors)
# subcontractor = Subcontractor.query.get(subcontractor_id)
# bill_gen = SubcontractorBill()
# if download_all:
# bill_gen.Fetch(subcontractor_id=subcontractor_id)
# file_name = f"{subcontractor.subcontractor_name}_ALL_BILLS.xlsx"
# else:
# if not ra_bill_no:
# flash("Please enter an RA Bill Number.", "danger")
# return render_template("report.html", subcontractors=subcontractors)
# bill_gen.Fetch(RA_Bill_No=ra_bill_no, subcontractor_id=subcontractor_id)
# file_name = f"{subcontractor.subcontractor_name}_RA_{ra_bill_no}_Report.xlsx"
# if bill_gen.df_tr.empty and bill_gen.df_mh.empty and bill_gen.df_dc.empty:
# flash("No data found for this selection.", "warning")
# return render_template("report.html", subcontractors=subcontractors)
# output = io.BytesIO()
# with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
# bill_gen.df_tr.to_excel(writer, index=False, sheet_name="Tr.Ex.")
# bill_gen.df_mh.to_excel(writer, index=False, sheet_name="MH.Ex.")
# bill_gen.df_dc.to_excel(writer, index=False, sheet_name="MH & DC")
# output.seek(0)
# return send_file(output, download_name=file_name, as_attachment=True, mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")
# return render_template("report.html", subcontractors=subcontractors)
2026-01-16 11:30:49 +05:30
>>>>>>> pankaj-dev
=======
2026-01-16 11:27:26 +05:30
2026-01-15 14:29:58 +05:30
>>>>>>> pankaj-dev
2025-12-24 16:37:07 +05:30
@file_report_bp.route("/report", methods=["GET", "POST"])
@login_required
2025-12-24 16:37:07 +05:30
def report_file():
subcontractors = Subcontractor.query.all()
2026-01-16 11:30:49 +05:30
<<<<<<< HEAD
2026-01-15 14:29:58 +05:30
<<<<<<< HEAD
2025-12-24 16:37:07 +05:30
if request.method == "POST":
subcontractor_id = request.form.get("subcontractor_id")
ra_bill_no = request.form.get("ra_bill_no") # Collected from the updated HTML
2025-12-24 16:37:07 +05:30
if not subcontractor_id or not ra_bill_no:
flash("Please select a subcontractor and enter an RA Bill Number.", "danger")
2025-12-24 16:37:07 +05:30
return render_template("report.html", subcontractors=subcontractors)
subcontractor = Subcontractor.query.get(subcontractor_id)
# Instantiate and Fetch Data
bill_gen = SubcontractorBill()
bill_gen.Fetch(RA_Bill_No=ra_bill_no, subcontractor_id=subcontractor_id)
# Check if any data was found
if bill_gen.df_tr.empty and bill_gen.df_mh.empty and bill_gen.df_dc.empty:
flash(f"No data found for {subcontractor.subcontractor_name} in RA Bill {ra_bill_no}", "warning")
return render_template("report.html", subcontractors=subcontractors)
# WRITE EXCEL FILE
output = io.BytesIO()
file_name = f"{subcontractor.subcontractor_name}_RA_{ra_bill_no}_Report.xlsx"
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
bill_gen.df_tr.to_excel(writer, index=False, sheet_name="Tr.Ex.")
bill_gen.df_mh.to_excel(writer, index=False, sheet_name="MH.Ex.")
bill_gen.df_dc.to_excel(writer, index=False, sheet_name="MH & DC")
output.seek(0)
return send_file(
output,
download_name=file_name,
as_attachment=True,
mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
2025-12-12 11:38:54 +05:30
return render_template("report.html", subcontractors=subcontractors)
2025-12-12 11:38:54 +05:30
# (ClientBill class and client_vs_all_subcontractor route would follow here...)
2025-12-23 19:40:41 +05:30
2026-01-15 14:29:58 +05:30
=======
tables = None # Match the variable name used in HTML
2026-01-16 11:30:49 +05:30
=======
2026-01-16 11:27:26 +05:30
tables = None
2026-01-16 11:30:49 +05:30
>>>>>>> pankaj-dev
selected_sc_id = None
ra_bill_no = None
download_all = False
2025-12-24 16:37:07 +05:30
if request.method == "POST":
subcontractor_id = request.form.get("subcontractor_id")
ra_bill_no = request.form.get("ra_bill_no")
download_all = request.form.get("download_all") == "true"
action = request.form.get("action")
2025-12-24 16:37:07 +05:30
if not subcontractor_id:
flash("Please select a subcontractor.", "danger")
return render_template("report.html", subcontractors=subcontractors)
2025-12-24 16:37:07 +05:30
subcontractor = Subcontractor.query.get(subcontractor_id)
bill_gen = SubcontractorBill()
2025-12-24 16:37:07 +05:30
if download_all:
bill_gen.Fetch(subcontractor_id=subcontractor_id)
file_name = f"{subcontractor.subcontractor_name}_ALL_BILLS.xlsx"
else:
if not ra_bill_no:
flash("Please enter an RA Bill Number.", "danger")
return render_template("report.html", subcontractors=subcontractors)
bill_gen.Fetch(RA_Bill_No=ra_bill_no, subcontractor_id=subcontractor_id)
file_name = f"{subcontractor.subcontractor_name}_RA_{ra_bill_no}_Report.xlsx"
if bill_gen.df_tr.empty and bill_gen.df_mh.empty and bill_gen.df_dc.empty:
flash("No data found for this selection.", "warning")
return render_template("report.html", subcontractors=subcontractors)
# If download is clicked, return file immediately
if action == "download":
output = io.BytesIO()
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
bill_gen.df_tr.to_excel(writer, index=False, sheet_name="Tr.Ex.")
bill_gen.df_mh.to_excel(writer, index=False, sheet_name="MH.Ex.")
bill_gen.df_dc.to_excel(writer, index=False, sheet_name="MH & DC")
2026-01-16 11:27:26 +05:30
bill_gen.df_laying.to_excel(writer, index=False, sheet_name="Laying")
output.seek(0)
return send_file(output, download_name=file_name, as_attachment=True)
# We add bootstrap classes directly to the pandas output
table_classes = "table table-hover table-bordered table-striped"
tables = {
"tr": bill_gen.df_tr.to_html(classes=table_classes, index=False),
"mh": bill_gen.df_mh.to_html(classes=table_classes, index=False),
2026-01-16 11:27:26 +05:30
"dc": bill_gen.df_dc.to_html(classes=table_classes, index=False),
"laying": bill_gen.df_laying.to_html(classes=table_classes, index=False)
}
selected_sc_id = subcontractor_id
return render_template(
"report.html",
subcontractors=subcontractors,
2026-01-16 11:27:26 +05:30
tables=tables,
selected_sc_id=selected_sc_id,
ra_bill_no=ra_bill_no,
download_all=download_all
)
2025-12-24 16:37:07 +05:30
2026-01-15 14:29:58 +05:30
>>>>>>> pankaj-dev
2025-12-23 19:40:41 +05:30
@file_report_bp.route("/client_vs_subcont", methods=["GET", "POST"])
@login_required
2025-12-23 19:40:41 +05:30
def client_vs_all_subcontractor():
tables = {"tr": None, "mh": None, "dc": None}
ra_val = ""
2025-12-23 19:40:41 +05:30
if request.method == "POST":
RA_Bill_No = request.form.get("RA_Bill_No")
ra_val = RA_Bill_No
2025-12-23 19:40:41 +05:30
if not RA_Bill_No:
flash("Please enter RA Bill No.", "danger")
return render_template("generate_comparison_client_vs_subcont.html", tables=tables, ra_val=ra_val)
2025-12-24 16:37:07 +05:30
clientBill = ClientBill()
clientBill.Fetch(RA_Bill_No=RA_Bill_No)
contractorBill = SubcontractorBill()
contractorBill.Fetch(RA_Bill_No=RA_Bill_No)
2026-01-15 14:29:58 +05:30
<<<<<<< HEAD
2025-12-24 16:37:07 +05:30
2025-12-23 19:40:41 +05:30
# GROUP SUBCONTRACTOR DATA
qty_cols = [
"Soft_Murum_0_to_1_5_total",
"Soft_Murum_1_5_to_3_0_total",
"Soft_Murum_3_0_to_4_5_total",
"Hard_Murum_0_to_1_5_total",
"Hard_Murum_1_5_and_above_total",
"Soft_Rock_0_to_1_5_total",
"Soft_Rock_1_5_and_above_total",
"Hard_Rock_0_to_1_5_total",
"Hard_Rock_1_5_to_3_0_total",
"Hard_Rock_3_0_to_4_5_total",
"Hard_Rock_4_5_to_6_0_total",
"Hard_Rock_6_0_to_7_5_total"
]
mh_dc_qty_cols = [
"d_0_to_0_75",
"d_0_76_to_1_05",
"d_1_06_to_1_65",
"d_1_66_to_2_15",
"d_2_16_to_2_65",
"d_2_66_to_3_15",
"d_3_16_to_3_65",
"d_3_66_to_4_15",
"d_4_16_to_4_65",
"d_4_66_to_5_15",
"d_5_16_to_5_65",
"d_5_66_to_6_15",
"d_6_16_to_6_65",
"d_6_66_to_7_15",
"d_7_16_to_7_65",
"d_7_66_to_8_15",
"d_8_16_to_8_65",
"d_8_66_to_9_15",
"d_9_16_to_9_65",
"Domestic_Chambers"
]
2025-12-24 16:37:07 +05:30
df_sub_tr_grp = (contractorBill.df_tr.groupby(["Location", "MH_NO"], as_index=False)[qty_cols].sum())
2025-12-23 19:40:41 +05:30
2025-12-24 16:37:07 +05:30
df_sub_mh_grp = (contractorBill.df_mh.groupby(["Location", "MH_NO"], as_index=False)[qty_cols].sum())
2025-12-23 19:40:41 +05:30
2025-12-24 16:37:07 +05:30
df_sub_dc_grp = (contractorBill.df_dc.groupby(["Location", "Node_No"], as_index=False)[mh_dc_qty_cols].sum())
2025-12-23 19:40:41 +05:30
# MERGE CLIENT VS SUBCONTRACTOR
2025-12-24 16:37:07 +05:30
df_tr_cmp = clientBill.df_tr.merge(
2025-12-23 19:40:41 +05:30
df_sub_tr_grp,
on=["Location", "MH_NO"],
how="left",
suffixes=("_Client", "_Sub")
)
2025-12-24 16:37:07 +05:30
df_mh_cmp = clientBill.df_mh.merge(
2025-12-23 19:40:41 +05:30
df_sub_mh_grp,
on=["Location", "MH_NO"],
how="left",
suffixes=("_Client", "_Sub")
)
2025-12-24 16:37:07 +05:30
if "MH_NO" in clientBill.df_dc.columns:
clientBill.df_dc.rename(columns={"MH_NO": "Node_No"}, inplace=True)
2025-12-23 19:40:41 +05:30
2025-12-24 16:37:07 +05:30
df_dc_cmp = clientBill.df_dc.merge(
2025-12-23 19:40:41 +05:30
df_sub_dc_grp,
on=["Location", "Node_No"],
how="left",
suffixes=("_Client", "_Sub")
)
# CALCULATE DIFFERENCE
for col in qty_cols:
if f"{col}_Client" in df_tr_cmp.columns:
df_tr_cmp[f"{col}_Diff"] = (
df_tr_cmp[f"{col}_Client"].fillna(0)
- df_tr_cmp[f"{col}_Sub"].fillna(0)
)
print("Sum of df_tr_cmp::",df_tr_cmp)
df_mh_cmp[f"{col}_Diff"] = (
df_mh_cmp[f"{col}_Client"].fillna(0)
- df_mh_cmp[f"{col}_Sub"].fillna(0)
)
print("Sum of df_mh_cmp::",df_mh_cmp)
df_dc_cmp["Domestic_Chambers_Diff"] = (
df_dc_cmp["Domestic_Chambers_Client"].fillna(0)
- df_dc_cmp["Domestic_Chambers_Sub"].fillna(0)
)
# EXPORT EXCEL
output = io.BytesIO()
file_name = f"Client_vs_All_Subcontractor_RA_{RA_Bill_No}.xlsx"
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
df_tr_cmp.to_excel(writer, sheet_name="Tr.Ex", index=False)
df_mh_cmp.to_excel(writer, sheet_name="Mh.Ex", index=False)
df_dc_cmp.to_excel(writer, sheet_name="MH & DC", index=False)
output.seek(0)
return send_file(
output,
download_name=file_name,
as_attachment=True,
mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
2026-01-15 14:29:58 +05:30
return render_template("generate_comparison_client_vs_subcont.html")
=======
# --- SAFETY CHECK: Verify data exists before merging ---
if clientBill.df_tr.empty and clientBill.df_mh.empty:
flash(f"No Client records found for RA Bill {RA_Bill_No}", "warning")
return render_template("generate_comparison_client_vs_subcont.html", tables=tables, ra_val=ra_val)
qty_cols = [...] # (Keep your existing list)
mh_dc_qty_cols = [...] # (Keep your existing list)
def aggregate_df(df, group_cols, sum_cols):
if df.empty:
# Create an empty DF with the correct columns to avoid Merge/Key Errors
return pd.DataFrame(columns=group_cols + sum_cols)
existing_cols = [c for c in sum_cols if c in df.columns]
# Ensure group_cols exist in the DF
for col in group_cols:
if col not in df.columns:
df[col] = "N/A" # Fill missing join keys
return df.groupby(group_cols, as_index=False)[existing_cols].sum()
# Aggregate data
df_sub_tr_grp = aggregate_df(contractorBill.df_tr, ["Location", "MH_NO"], qty_cols)
df_sub_mh_grp = aggregate_df(contractorBill.df_mh, ["Location", "MH_NO"], qty_cols)
df_sub_dc_grp = aggregate_df(contractorBill.df_dc, ["Location", "Node_No"], mh_dc_qty_cols)
# --- FINAL MERGE LOGIC ---
# We check if "Location" exists in the client data. If not, we add it to prevent the KeyError.
for df_client in [clientBill.df_tr, clientBill.df_mh, clientBill.df_dc]:
if not df_client.empty and "Location" not in df_client.columns:
df_client["Location"] = "Unknown"
try:
df_tr_cmp = clientBill.df_tr.merge(df_sub_tr_grp, on=["Location", "MH_NO"], how="left", suffixes=("_Client", "_Sub"))
df_mh_cmp = clientBill.df_mh.merge(df_sub_mh_grp, on=["Location", "MH_NO"], how="left", suffixes=("_Client", "_Sub"))
df_dc_cmp = clientBill.df_dc.merge(df_sub_dc_grp, on=["Location", "Node_No"], how="left", suffixes=("_Client", "_Sub"))
except KeyError as e:
flash(f"Merge Error: Missing column {str(e)}. Check if 'Location' is defined in your database models.", "danger")
return render_template("generate_comparison_client_vs_subcont.html", tables=tables, ra_val=ra_val)
# ... (Rest of your calculation and download logic) ...
# Convert to HTML for preview
tables["tr"] = df_tr_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
tables["mh"] = df_mh_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
tables["dc"] = df_dc_cmp.to_html(classes='table table-striped table-hover table-sm', index=False)
return render_template("generate_comparison_client_vs_subcont.html", tables=tables, ra_val=ra_val)
2026-01-15 14:29:58 +05:30
>>>>>>> pankaj-dev