2025-12-13 18:50:27 +05:30
|
|
|
from flask import Blueprint, render_template, request, send_file, flash
|
|
|
|
|
from app.models.subcontractor_model import Subcontractor
|
|
|
|
|
|
|
|
|
|
from app.models.trench_excavation_model import TrenchExcavation
|
|
|
|
|
from app.models.tr_ex_client_model import TrenchExcavationClient
|
|
|
|
|
from app import db
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import io
|
|
|
|
|
|
|
|
|
|
generate_report_bp = Blueprint("generate_report", __name__, url_prefix="/report")
|
|
|
|
|
|
|
|
|
|
|
2025-12-14 11:49:45 +05:30
|
|
|
|
2025-12-13 18:50:27 +05:30
|
|
|
@generate_report_bp.route("/comparison_report", methods=["GET", "POST"])
|
|
|
|
|
def comparison_report():
|
|
|
|
|
subcontractors = Subcontractor.query.all()
|
|
|
|
|
|
|
|
|
|
if request.method == "POST":
|
|
|
|
|
subcontractor_id = request.form.get("subcontractor_id")
|
|
|
|
|
|
|
|
|
|
if not subcontractor_id:
|
|
|
|
|
flash("Please select a subcontractor.", "danger")
|
|
|
|
|
return render_template("generate_comparison_report.html", subcontractors=subcontractors)
|
|
|
|
|
|
|
|
|
|
subcontractor = Subcontractor.query.get_or_404(subcontractor_id)
|
|
|
|
|
|
|
|
|
|
# Fetch data
|
|
|
|
|
contractor_rows = TrenchExcavation.query.filter_by(subcontractor_id=subcontractor_id).all()
|
|
|
|
|
client_rows = TrenchExcavationClient.query.filter_by(subcontractor_id=subcontractor_id).all()
|
|
|
|
|
|
2025-12-14 11:49:45 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
diff_rows = []
|
|
|
|
|
|
|
|
|
|
for row1, row2 in zip(client_rows, contractor_rows):
|
|
|
|
|
|
|
|
|
|
total1 = (
|
|
|
|
|
(row1.Marshi_Muddy_Slushy_0_to_1_5_total or 0) +
|
|
|
|
|
(row1.Marshi_Muddy_Slushy_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row1.Marshi_Muddy_Slushy_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row1.Soft_Murum_0_to_1_5_total or 0) +
|
|
|
|
|
(row1.Soft_Murum_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row1.Soft_Murum_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row1.Hard_Murum_0_to_1_5_total or 0) +
|
|
|
|
|
(row1.Hard_Murum_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row1.Hard_Murum_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row1.Soft_Rock_0_to_1_5_total or 0) +
|
|
|
|
|
(row1.Soft_Rock_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row1.Soft_Rock_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row1.Hard_Rock_0_to_1_5_total or 0) +
|
|
|
|
|
(row1.Hard_Rock_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row1.Hard_Rock_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row1.Hard_Rock_4_5_to_6_0_total or 0) +
|
|
|
|
|
(row1.Hard_Rock_6_0_to_7_5_total or 0)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
total2 = (
|
|
|
|
|
(row2.Soft_Murum_0_to_1_5_total or 0) +
|
|
|
|
|
(row2.Soft_Murum_1_5_to_3_0_total or 0) +
|
|
|
|
|
(row2.Soft_Murum_3_0_to_4_5_total or 0) +
|
|
|
|
|
(row2.Hard_Murum_0_to_1_5_total or 0) +
|
|
|
|
|
(row2.Hard_Murum_1_5_and_above_total or 0) +
|
|
|
|
|
(row2.Soft_Rock_0_to_1_5_total or 0) +
|
|
|
|
|
(row2.Soft_Rock_1_5_and_above_total or 0) +
|
|
|
|
|
(row2.Hard_Rock_0_to_1_5_total or 0) +
|
|
|
|
|
(row2.Hard_Rock_1_5_and_above_total or 0) +
|
|
|
|
|
(row2.Hard_Rock_4_5_to_6_0_total or 0) +
|
|
|
|
|
(row2.Hard_Rock_6_0_to_7_5_total or 0)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
diff = total1 - total2
|
|
|
|
|
|
|
|
|
|
# ---- store for excel ----
|
|
|
|
|
diff_rows.append({
|
|
|
|
|
"Location": row1.Location,
|
|
|
|
|
"Node No": row1.MH_NO,
|
|
|
|
|
"Client Sum": round(total1, 2),
|
|
|
|
|
"Subcontractor Sum": round(total2, 2),
|
|
|
|
|
"Diff": round(diff, 2)
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
# optional console print
|
|
|
|
|
print(
|
|
|
|
|
f"Location : {row1.Location} | "
|
|
|
|
|
f"MH_NO : {row1.MH_NO} | "
|
|
|
|
|
f"Client : {total1} | "
|
|
|
|
|
f"Sub : {total2} | "
|
|
|
|
|
f"Diff : {diff}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-12-13 18:50:27 +05:30
|
|
|
# Convert to DataFrame
|
|
|
|
|
df_contractor = pd.DataFrame([r.__dict__ for r in contractor_rows])
|
|
|
|
|
df_client = pd.DataFrame([r.__dict__ for r in client_rows])
|
2025-12-14 11:49:45 +05:30
|
|
|
df_diff = pd.DataFrame(diff_rows, columns=["Location", "Node No", "Client Sum", "Subcontractor Sum", "Diff"])
|
|
|
|
|
|
2025-12-13 18:50:27 +05:30
|
|
|
|
|
|
|
|
# Drop unwanted columns
|
|
|
|
|
drop_cols = ["id", "subcontractor_id", "created_at", "_sa_instance_state", "Remarks"]
|
|
|
|
|
df_contractor.drop(columns=drop_cols, errors="ignore", inplace=True)
|
|
|
|
|
df_client.drop(columns=drop_cols, errors="ignore", inplace=True)
|
|
|
|
|
|
|
|
|
|
# Convert to numeric
|
|
|
|
|
df_contractor = df_contractor.apply(pd.to_numeric, errors="coerce").fillna(0)
|
|
|
|
|
df_client = df_client.apply(pd.to_numeric, errors="coerce").fillna(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# EXPORT EXCEL
|
|
|
|
|
output = io.BytesIO()
|
|
|
|
|
file_name = f"{subcontractor.subcontractor_name}_Comparison_Report.xlsx"
|
|
|
|
|
|
|
|
|
|
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
|
|
|
|
|
df_contractor.to_excel(writer, index=False, sheet_name="Contractor_Data")
|
|
|
|
|
df_client.to_excel(writer, index=False, sheet_name="Client_Data")
|
2025-12-14 11:49:45 +05:30
|
|
|
df_diff.to_excel(writer, index=False, sheet_name="Diff")
|
|
|
|
|
|
|
|
|
|
|
2025-12-13 18:50:27 +05:30
|
|
|
|
|
|
|
|
output.seek(0)
|
|
|
|
|
|
|
|
|
|
return send_file(
|
|
|
|
|
output,
|
|
|
|
|
as_attachment=True,
|
|
|
|
|
download_name=file_name,
|
|
|
|
|
mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return render_template("generate_comparison_report.html", subcontractors=subcontractors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|